

Acknowledgments

Since we began writing this book in 1996, many people have given us invaluable help and have been
influential in shaping our thoughts on how to best organize and teach a networking course. We want to say A
BIG THANKS to everyone who has helped us from the earliest first drafts of this book, up to this seventh
edition. We are also very thankful to the many hundreds of readers from around the world—students, faculty,
practitioners—who have sent us thoughts and comments on earlier editions of the book and suggestions for
future editions of the book. Special thanks go out to:

Al Aho (Columbia University)

Hisham Al-Mubaid (University of Houston-Clear Lake)

Pratima Akkunoor (Arizona State University)

Paul Amer (University of Delaware)

Shamiul Azom (Arizona State University)

Lichun Bao (University of California at Irvine)

Paul Barford (University of Wisconsin)

Bobby Bhattacharjee (University of Maryland)

Steven Bellovin (Columbia University)

Pravin Bhagwat (Wibhu)

Supratik Bhattacharyya (previously at Sprint)

Ernst Biersack (Eurécom Institute)

Shahid Bokhari (University of Engineering & Technology, Lahore)

Jean Bolot (Technicolor Research)

Daniel Brushteyn (former University of Pennsylvania student)

Ken Calvert (University of Kentucky)

Evandro Cantu (Federal University of Santa Catarina)

Jeff Case (SNMP Research International)

Jeff Chaltas (Sprint)

Vinton Cerf (Google)

Byung Kyu Choi (Michigan Technological University)

Bram Cohen (BitTorrent, Inc.)

Constantine Coutras (Pace University)

John Daigle (University of Mississippi)

Edmundo A. de Souza e Silva (Federal University of Rio de Janeiro)

Philippe Decuetos (Eurécom Institute)

Christophe Diot (Technicolor Research)

Prithula Dhunghel (Akamai)

Deborah Estrin (University of California, Los Angeles)

Michalis Faloutsos (University of California at Riverside)

Wu-chi Feng (Oregon Graduate Institute)

Sally Floyd (ICIR, University of California at Berkeley)

Paul Francis (Max Planck Institute)

David Fullager (Netflix)

Lixin Gao (University of Massachusetts)

JJ Garcia-Luna-Aceves (University of California at Santa Cruz)

Mario Gerla (University of California at Los Angeles)

David Goodman (NYU-Poly)

Yang Guo (Alcatel/Lucent Bell Labs)

Tim Griffin (Cambridge University)

Max Hailperin (Gustavus Adolphus College)

Bruce Harvey (Florida A&M University, Florida State University)

Carl Hauser (Washington State University)

Rachelle Heller (George Washington University)

Phillipp Hoschka (INRIA/W3C)

Wen Hsin (Park University)

Albert Huang (former University of Pennsylvania student)

Cheng Huang (Microsoft Research)

Esther A. Hughes (Virginia Commonwealth University)

Van Jacobson (Xerox PARC)

Pinak Jain (former NYU-Poly student)

Jobin James (University of California at Riverside)

Sugih Jamin (University of Michigan)

Shivkumar Kalyanaraman (IBM Research, India)

Jussi Kangasharju (University of Helsinki)

Sneha Kasera (University of Utah)

Parviz Kermani (formerly of IBM Research)

Hyojin Kim (former University of Pennsylvania student)

Leonard Kleinrock (University of California at Los Angeles)

David Kotz (Dartmouth College)

Beshan Kulapala (Arizona State University)

Rakesh Kumar (Bloomberg)

Miguel A. Labrador (University of South Florida)

Simon Lam (University of Texas)

Steve Lai (Ohio State University)

Tom LaPorta (Penn State University)

Tim-Berners Lee (World Wide Web Consortium)

Arnaud Legout (INRIA)

Lee Leitner (Drexel University)

Brian Levine (University of Massachusetts)

Chunchun Li (former NYU-Poly student)

Yong Liu (NYU-Poly)

William Liang (former University of Pennsylvania student)

Willis Marti (Texas A&M University)

Nick McKeown (Stanford University)

Josh McKinzie (Park University)

Deep Medhi (University of Missouri, Kansas City)

Bob Metcalfe (International Data Group)

Sue Moon (KAIST)

Jenni Moyer (Comcast)

Erich Nahum (IBM Research)

Christos Papadopoulos (Colorado Sate University)

Craig Partridge (BBN Technologies)

Radia Perlman (Intel)

Jitendra Padhye (Microsoft Research)

Vern Paxson (University of California at Berkeley)

Kevin Phillips (Sprint)

George Polyzos (Athens University of Economics and Business)

Sriram Rajagopalan (Arizona State University)

Ramachandran Ramjee (Microsoft Research)

Ken Reek (Rochester Institute of Technology)

Martin Reisslein (Arizona State University)

Jennifer Rexford (Princeton University)

Leon Reznik (Rochester Institute of Technology)

Pablo Rodrigez (Telefonica)

Sumit Roy (University of Washington)

Dan Rubenstein (Columbia University)

Avi Rubin (Johns Hopkins University)

Douglas Salane (John Jay College)

Despina Saparilla (Cisco Systems)

John Schanz (Comcast)

Henning Schulzrinne (Columbia University)

Mischa Schwartz (Columbia University)

Ardash Sethi (University of Delaware)

Harish Sethu (Drexel University)

K. Sam Shanmugan (University of Kansas)

Prashant Shenoy (University of Massachusetts)

Clay Shields (Georgetown University)

Subin Shrestra (University of Pennsylvania)

Bojie Shu (former NYU-Poly student)

Mihail L. Sichitiu (NC State University)

Peter Steenkiste (Carnegie Mellon University)

Tatsuya Suda (University of California at Irvine)

Kin Sun Tam (State University of New York at Albany)

Don Towsley (University of Massachusetts)

David Turner (California State University, San Bernardino)

Nitin Vaidya (University of Illinois)

Michele Weigle (Clemson University)

Table of Contents

Chapter 1 Computer Networks and the Internet 1
1.1 What Is the Internet? 2

1.1.1 A Nuts-and-Bolts Description 2

1.1.2 A Services Description 5

1.1.3 What Is a Protocol? 7

1.2 The Network Edge 9
1.2.1 Access Networks 12

1.2.2 Physical Media 18

1.3 The Network Core 21
1.3.1 Packet Switching 23

1.3.2 Circuit Switching 27

1.3.3 A Network of Networks 31

1.4 Delay, Loss, and Throughput in Packet-Switched Networks 35
1.4.1 Overview of Delay in Packet-Switched Networks 35

1.4.2 Queuing Delay and Packet Loss 39

1.4.3 End-to-End Delay 41

1.4.4 Throughput in Computer Networks 43

1.5 Protocol Layers and Their Service Models 47
1.5.1 Layered Architecture 47

1.5.2 Encapsulation 53

1.6 Networks Under Attack 55

1.7 History of Computer Networking and the Internet 59
1.7.1 The Development of Packet Switching: 1961–1972 59

1.7.2 Proprietary Networks and Internetworking: 1972–1980 60

1.7.3 A Proliferation of Networks: 1980–1990 62

1.7.4 The Internet Explosion: The 1990s 63

1.7.5 The New Millennium 64

1.8 Summary 65

1.1 What Is the Internet?

In this book, we’ll use the public Internet, a specific computer network, as our principal vehicle for

discussing computer networks and their protocols. But what is the Internet? There are a couple of ways
to answer this question. First, we can describe the nuts and bolts of the Internet, that is, the basic
hardware and software components that make up the Internet. Second, we can describe the Internet in
terms of a networking infrastructure that provides services to distributed applications. Let’s begin with

the nuts-and-bolts description, using Figure 1.1 to illustrate our discussion.

1.1.1 A Nuts-and-Bolts Description

The Internet is a computer network that interconnects billions of computing devices throughout the
world. Not too long ago, these computing devices were primarily traditional desktop PCs, Linux
workstations, and so-called servers that store and transmit information such as Web pages and e-mail
messages. Increasingly, however, nontraditional Internet “things” such as laptops, smartphones, tablets,
TVs, gaming consoles, thermostats, home security systems, home appliances, watches, eye glasses,

cars, traffic control systems and more are being connected to the Internet. Indeed, the term computer
network is beginning to sound a bit dated, given the many nontraditional devices that are being hooked
up to the Internet. In Internet jargon, all of these devices are called hosts or end systems. By some
estimates, in 2015 there were about 5 billion devices connected to the Internet, and the number will

reach 25 billion by 2020 [Gartner 2014]. It is estimated that in 2015 there were over 3.2 billion Internet
users worldwide, approximately 40% of the world population [ITU 2015].

Figure 1.1 Some pieces of the Internet

End systems are connected together by a network of communication links and packet switches.

We’ll see in Section 1.2 that there are many types of communication links, which are made up of

1.4 Delay, Loss, and Throughput in Packet-Switched Networks

Back in Section 1.1 we said that the Internet can be viewed as an infrastructure that provides services
to distributed applications running on end systems. Ideally, we would like Internet services to be able to
move as much data as we want between any two end systems, instantaneously, without any loss of
data. Alas, this is a lofty goal, one that is unachievable in reality. Instead, computer networks necessarily
constrain throughput (the amount of data per second that can be transferred) between end systems,
introduce delays between end systems, and can actually lose packets. On one hand, it is unfortunate
that the physical laws of reality introduce delay and loss as well as constrain throughput. On the other
hand, because computer networks have these problems, there are many fascinating issues surrounding
how to deal with the problems—more than enough issues to fill a course on computer networking and to
motivate thousands of PhD theses! In this section, we’ll begin to examine and quantify delay, loss, and
throughput in computer networks.

1.4.1 Overview of Delay in Packet-Switched Networks

Recall that a packet starts in a host (the source), passes through a series of routers, and ends its
journey in another host (the destination). As a packet travels from one node (host or router) to the

subsequent node (host or router) along this path, the packet suffers from several types of delays at each
node along the path. The most important of these delays are the nodal processing delay, queuing
delay, transmission delay, and propagation delay; together, these delays accumulate to give a total
nodal delay. The performance of many Internet applications—such as search, Web browsing, e-mail,
maps, instant messaging, and voice-over-IP—are greatly affected by network delays. In order to acquire
a deep understanding of packet switching and computer networks, we must understand the nature and
importance of these delays.

Types of Delay

Let’s explore these delays in the context of Figure 1.16. As part of its end-to-end route between source
and destination, a packet is sent from the upstream node through router A to router B. Our goal is to
characterize the nodal delay at router A. Note that router A has an outbound link leading to router B.
This link is preceded by a queue (also known as a buffer). When the packet arrives at router A from the
upstream node, router A examines the packet’s header to determine the appropriate outbound link for
the packet and then directs the packet to this link. In this example, the outbound link for the packet is the
one that leads to router B. A packet can be transmitted on a link only if there is no other packet currently

between tollbooths as links and the tollbooths as routers. Suppose that cars travel (that is, propagate)
on the highway at a rate of 100 km/hour (that is, when a car leaves a tollbooth, it instantaneously
accelerates to 100 km/hour and maintains that speed between tollbooths). Suppose next that 10 cars,
traveling together as a caravan, follow each other in a fixed order. You can think of each car as a bit and
the caravan as a packet. Also suppose that each

Figure 1.17 Caravan analogy

tollbooth services (that is, transmits) a car at a rate of one car per 12 seconds, and that it is late at night
so that the caravan’s cars are the only cars on the highway. Finally, suppose that whenever the first car
of the caravan arrives at a tollbooth, it waits at the entrance until the other nine cars have arrived and
lined up behind it. (Thus the entire caravan must be stored at the tollbooth before it can begin to be
forwarded.) The time required for the tollbooth to push the entire caravan onto the highway is

. This time is analogous to the transmission delay in a router. The
time required for a car to travel from the exit of one tollbooth to the next tollbooth is

. This time is analogous to propagation delay. Therefore, the time from
when the caravan is stored in front of a tollbooth until the caravan is stored in front of the next tollbooth
is the sum of transmission delay and propagation delay—in this example, 62 minutes.

Let’s explore this analogy a bit more. What would happen if the tollbooth service time for a caravan were
greater than the time for a car to travel between tollbooths? For example, suppose now that the cars
travel at the rate of 1,000 km/hour and the tollbooth services cars at the rate of one car per minute. Then
the traveling delay between two tollbooths is 6 minutes and the time to serve a caravan is 10 minutes. In
this case, the first few cars in the caravan will arrive at the second tollbooth before the last cars in the
caravan leave the first tollbooth. This situation also arises in packet-switched networks—the first bits in a
packet can arrive at a router while many of the remaining bits in the packet are still waiting to be
transmitted by the preceding router.

If a picture speaks a thousand words, then an animation must speak a million words. The Web site for
this textbook provides an interactive Java applet that nicely illustrates and contrasts transmission delay

and propagation delay. The reader is highly encouraged to visit that applet. [Smith 2009] also provides
a very readable discussion of propagation, queueing, and transmission delays.

If we let d , d , d , and d denote the processing, queuing, transmission, and propagation

(10 cars)/(5 cars/minute)=2 minutes

100 km/(100 km/hour)=1 hour

proc queue trans prop

delays, then the total nodal delay is given by

The contribution of these delay components can vary significantly. For example, d can be negligible
(for example, a couple of microseconds) for a link connecting two routers on the same university

campus; however, d is hundreds of milliseconds for two routers interconnected by a geostationary

satellite link, and can be the dominant term in d . Similarly, d can range from negligible to
significant. Its contribution is typically negligible for transmission rates of 10 Mbps and higher (for
example, for LANs); however, it can be hundreds of milliseconds for large Internet packets sent over

low-speed dial-up modem links. The processing delay, d , is often negligible; however, it strongly
influences a router’s maximum throughput, which is the maximum rate at which a router can forward
packets.

1.4.2 Queuing Delay and Packet Loss

The most complicated and interesting component of nodal delay is the queuing delay, d . In fact,
queuing delay is so important and interesting in computer networking that thousands of papers and

numerous books have been written about it [Bertsekas 1991; Daigle 1991; Kleinrock 1975, Kleinrock
1976; Ross 1995]. We give only a high-level, intuitive discussion of queuing delay here; the more
curious reader may want to browse through some of the books (or even eventually write a PhD thesis on

the subject!). Unlike the other three delays (namely, d , d , and d), the queuing delay can vary
from packet to packet. For example, if 10 packets arrive at an empty queue at the same time, the first
packet transmitted will suffer no queuing delay, while the last packet transmitted will suffer a relatively
large queuing delay (while it waits for the other nine packets to be transmitted). Therefore, when
characterizing queuing delay, one typically uses statistical measures, such as average queuing delay,
variance of queuing delay, and the probability that the queuing delay exceeds some specified value.

When is the queuing delay large and when is it insignificant? The answer to this question depends on
the rate at which traffic arrives at the queue, the transmission rate of the link, and the nature of the
arriving traffic, that is, whether the traffic arrives periodically or arrives in bursts. To gain some insight

here, let a denote the average rate at which packets arrive at the queue (a is in units of packets/sec).
Recall that R is the transmission rate; that is, it is the rate (in bits/sec) at which bits are pushed out of the
queue. Also suppose, for simplicity, that all packets consist of L bits. Then the average rate at which bits
arrive at the queue is La bits/sec. Finally, assume that the queue is very big, so that it can hold
essentially an infinite number of bits. The ratio La/R, called the traffic intensity, often plays an
important role in estimating the extent of the queuing delay. If La/R > 1, then the average rate at which
bits arrive at the queue exceeds the rate at which the bits can be transmitted from the queue. In this

dnodal=dproc+dqueue+dtrans+dprop

prop

prop

nodal trans

proc

queue

proc trans prop

Figure 1.18 Dependence of average queuing delay on traffic intensity

congested means that its traffic intensity is close to 1. If some event causes an even slightly larger-than-
usual amount of traffic, the delays you experience can be huge.

To really get a good feel for what queuing delays are about, you are encouraged once again to visit the
textbook Web site, which provides an interactive Java applet for a queue. If you set the packet arrival
rate high enough so that the traffic intensity exceeds 1, you will see the queue slowly build up over time.

Packet Loss

In our discussions above, we have assumed that the queue is capable of holding an infinite number of
packets. In reality a queue preceding a link has finite capacity, although the queuing capacity greatly
depends on the router design and cost. Because the queue capacity is finite, packet delays do not really
approach infinity as the traffic intensity approaches 1. Instead, a packet can arrive to find a full queue.
With no place to store such a packet, a router will drop that packet; that is, the packet will be lost. This
overflow at a queue can again be seen in the Java applet for a queue when the traffic intensity is greater
than 1.

From an end-system viewpoint, a packet loss will look like a packet having been transmitted into the
network core but never emerging from the network at the destination. The fraction of lost packets
increases as the traffic intensity increases. Therefore, performance at a node is often measured not only
in terms of delay, but also in terms of the probability of packet loss. As we’ll discuss in the subsequent
chapters, a lost packet may be retransmitted on an end-to-end basis in order to ensure that all data are
eventually transferred from source to destination.

1.4.3 End-to-End Delay

To gain further insight into the important concept of throughput, let’s consider a few examples. Figure
1.19(a) shows two end systems, a server and a client, connected by two communication links and a
router. Consider the throughput for a file transfer from the server to the client. Let R denote the rate of

the link between the server and the router; and R denote the rate of the link between the router and the
client. Suppose that the only bits being sent in the entire network are those from the server to the client.
We now ask, in this ideal scenario, what is the server-to-client throughput? To answer this question, we

may think of bits as fluid and communication links as pipes. Clearly, the server cannot pump bits through
its link at a rate faster than R bps; and the router cannot forward bits at a rate faster than R bps. If

 then the bits pumped by the server will “flow” right through the router and arrive at the client at a

rate of R bps, giving a throughput of R bps. If, on the other hand, then the router will not be

able to forward bits as quickly as it receives them. In this case, bits will only leave the router at rate R ,

giving an end-to-end throughput of R . (Note also that if bits continue to arrive at the router at rate R ,

and continue to leave the router at R , the backlog of bits at the router waiting

Figure 1.19 Throughput for a file transfer from server to client

for transmission to the client will grow and grow—a most undesirable situation!) Thus, for this simple

two-link network, the throughput is min{R , R }, that is, it is the transmission rate of the bottleneck link.

Having determined the throughput, we can now approximate the time it takes to transfer a large file of F
bits from server to client as F/min{R , R }. For a specific example, suppose you are downloading an MP3
file of million bits, the server has a transmission rate of Mbps, and you have an access link
of Mbps. The time needed to transfer the file is then 32 seconds. Of course, these expressions for
throughput and transfer time are only approximations, as they do not account for store-and-forward and
processing delays as well as protocol issues.

Figure 1.19(b) now shows a network with N links between the server and the client, with the
transmission rates of the N links being Applying the same analysis as for the two-link
network, we find that the throughput for a file transfer from server to client is min , which

s

c

s c

Rs<Rc,

s s Rc<Rs,

c

c s

c

c s

s c

F=32 Rs=2
Rc=1

R1,R2,…, RN.
{R1,R2,…, RN}

is once again the transmission rate of the bottleneck link along the path between server and client.

Now consider another example motivated by today’s Internet. Figure 1.20(a) shows two end systems, a
server and a client, connected to a computer network. Consider the throughput for a file transfer from

the server to the client. The server is connected to the network with an access link of rate R and the

client is connected to the network with an access link of rate R . Now suppose that all the links in the

core of the communication network have very high transmission rates, much higher than R and R .
Indeed, today, the core of the Internet is over-provisioned with high speed links that experience little
congestion. Also suppose that the only bits being sent in the entire network are those from the server to
the client. Because the core of the computer network is like a wide pipe in this example, the rate at

which bits can flow from source to destination is again the minimum of R and R , that is, throughput

min{R , R }. Therefore, the constraining factor for throughput in today’s Internet is typically the access
network.

For a final example, consider Figure 1.20(b) in which there are 10 servers and 10 clients connected to
the core of the computer network. In this example, there are 10 simultaneous downloads taking place,
involving 10 client-server pairs. Suppose that these 10 downloads are the only traffic in the network at
the current time. As shown in the figure, there is a link in the core that is traversed by all 10 downloads.

Denote R for the transmission rate of this link R. Let’s suppose that all server access links have the
same rate R , all client access links have the same rate R , and the transmission rates of all the links in

the core—except the one common link of rate R—are much larger than R , R , and R. Now we ask, what

are the throughputs of the downloads? Clearly, if the rate of the common link, R, is large—say a
hundred times larger than both R and R —then the throughput for each download will once again be

min{R , R }. But what if the rate of the common link is of the same order as R and R ? What will the
throughput be in this case? Let’s take a look at a specific example. Suppose Mbps, Mbps,

 Mbps, and the

s

c

s c

s c =

s c

s c

s c

s c

s c s c

Rs=2 Rc=1
R=5

Sniffers can be deployed in wired environments as well. In wired broadcast environments, as in many
Ethernet LANs, a packet sniffer can obtain copies of broadcast packets sent over the LAN. As described

in Section 1.2, cable access technologies also broadcast packets and are thus vulnerable to sniffing.
Furthermore, a bad guy who gains access to an institution’s access router or access link to the Internet
may be able to plant a sniffer that makes a copy of every packet going to/from the organization. Sniffed
packets can then be analyzed offline for sensitive information.

Packet-sniffing software is freely available at various Web sites and as commercial products. Professors
teaching a networking course have been known to assign lab exercises that involve writing a packet-

sniffing and application-layer data reconstruction program. Indeed, the Wireshark [Wireshark 2016]
labs associated with this text (see the introductory Wireshark lab at the end of this chapter) use exactly
such a packet sniffer!

Because packet sniffers are passive—that is, they do not inject packets into the channel—they are
difficult to detect. So, when we send packets into a wireless channel, we must accept the possibility that
some bad guy may be recording copies of our packets. As you may have guessed, some of the best
defenses against packet sniffing involve cryptography. We will examine cryptography as it applies to

network security in Chapter 8.

The Bad Guys Can Masquerade as Someone You Trust

It is surprisingly easy (you will have the knowledge to do so shortly as you proceed through this text!) to
create a packet with an arbitrary source address, packet content, and destination address and then
transmit this hand-crafted packet into the Internet, which will dutifully forward the packet to its
destination. Imagine the unsuspecting receiver (say an Internet router) who receives such a packet,
takes the (false) source address as being truthful, and then performs some command embedded in the
packet’s contents (say modifies its forwarding table). The ability to inject packets into the Internet with a
false source address is known as IP spoofing, and is but one of many ways in which one user can
masquerade as another user.

To solve this problem, we will need end-point authentication, that is, a mechanism that will allow us to
determine with certainty if a message originates from where we think it does. Once again, we encourage
you to think about how this can be done for network applications and protocols as you progress through

the chapters of this book. We will explore mechanisms for end-point authentication in Chapter 8.

In closing this section, it’s worth considering how the Internet got to be such an insecure place in the first
place. The answer, in essence, is that the Internet was originally designed to be that way, based on the

model of “a group of mutually trusting users attached to a transparent network” [Blumenthal 2001]—a
model in which (by definition) there is no need for security. Many aspects of the original Internet
architecture deeply reflect this notion of mutual trust. For example, the ability for one user to send a

packet to any other user is the default rather than a requested/granted capability, and user identity is
taken at declared face value, rather than being authenticated by default.

But today’s Internet certainly does not involve “mutually trusting users.” Nonetheless, today’s users still
need to communicate when they don’t necessarily trust each other, may wish to communicate
anonymously, may communicate indirectly through third parties (e.g., Web caches, which we’ll study in

Chapter 2, or mobility-assisting agents, which we’ll study in Chapter 7), and may distrust the hardware,
software, and even the air through which they communicate. We now have many security-related
challenges before us as we progress through this book: We should seek defenses against sniffing, end-
point masquerading, man-in-the-middle attacks, DDoS attacks, malware, and more. We should keep in
mind that communication among mutually trusted users is the exception rather than the rule. Welcome
to the world of modern computer networking!

computer networking research in recent years [Al-Fares 2008; Greenberg 2009a; Greenberg 2009b;
Mysore 2009; Guo 2009; Wang 2010].

Figure 6.30 A data center network with a hierarchical topology

Load Balancing

A cloud data center, such as a Google or Microsoft data center, provides many applications
concurrently, such as search, e-mail, and video applications. To support requests from external clients,
each application is associated with a publicly visible IP address to which clients send their requests and
from which they receive responses. Inside the data center, the external requests are first directed to a
load balancer whose job it is to distribute requests to the hosts, balancing the load across the hosts as
a function of their current load. A large data center will often have several load balancers, each one
devoted to a set of specific cloud applications. Such a load balancer is sometimes referred to as a
“layer-4 switch” since it makes decisions based on the destination port number (layer 4) as well as
destination IP address in the packet. Upon receiving a request for a particular application, the load
balancer forwards it to one of the hosts that handles the application. (A host may then invoke the
services of other hosts to help process the request.) When the host finishes processing the request, it
sends its response back to the load balancer, which in turn relays the response back to the external
client. The load balancer not only balances the work load across hosts, but also provides a NAT-like
function, translating the public external IP address to the internal IP address of the appropriate host, and

then translating back for packets traveling in the reverse direction back to the clients. This prevents
clients from contacting hosts directly, which has the security benefit of hiding the internal network
structure and preventing clients from directly interacting with the hosts.

Hierarchical Architecture

For a small data center housing only a few thousand hosts, a simple network consisting of a border
router, a load balancer, and a few tens of racks all interconnected by a single Ethernet switch could
possibly suffice. But to scale to tens to hundreds of thousands of hosts, a data center often employs a
hierarchy of routers and switches, such as the topology shown in Figure 6.30. At the top of the
hierarchy, the border router connects to access routers (only two are shown in Figure 6.30, but there
can be many more). Below each access router there are three tiers of switches. Each access router
connects to a top-tier switch, and each top-tier switch connects to multiple second-tier switches and a
load balancer. Each second-tier switch in turn connects to multiple racks via the racks’ TOR switches
(third-tier switches). All links typically use Ethernet for their link-layer and physical-layer protocols, with a
mix of copper and fiber cabling. With such a hierarchical design, it is possible to scale a data center to
hundreds of thousands of hosts.

Because it is critical for a cloud application provider to continually provide applications with high
availability, data centers also include redundant network equipment and redundant links in their designs

(not shown in Figure 6.30). For example, each TOR switch can connect to two tier-2 switches, and each
access router, tier-1 switch, and tier-2 switch can be duplicated and integrated into the design [Cisco
2012; Greenberg 2009b]. In the hierarchical design in Figure 6.30, observe that the hosts below each
access router form a single subnet. In order to localize ARP broadcast traffic, each of these subnets is

further partitioned into smaller VLAN subnets, each comprising a few hundred hosts [Greenberg
2009a].

Although the conventional hierarchical architecture just described solves the problem of scale, it suffers

from limited host-to-host capacity [Greenberg 2009b]. To understand this limitation, consider again
Figure 6.30, and suppose each host connects to its TOR switch with a 1 Gbps link, whereas the links
between switches are 10 Gbps Ethernet links. Two hosts in the same rack can always communicate at a
full 1 Gbps, limited only by the rate of the hosts’ network interface cards. However, if there are many

simultaneous flows in the data center network, the maximum rate between two hosts in different racks
can be much less. To gain insight into this issue, consider a traffic pattern consisting of 40 simultaneous
flows between 40 pairs of hosts in different racks. Specifically, suppose each of 10 hosts in rack 1 in

Figure 6.30 sends a flow to a corresponding host in rack 5. Similarly, there are ten simultaneous flows
between pairs of hosts in racks 2 and 6, ten simultaneous flows between racks 3 and 7, and ten
simultaneous flows between racks 4 and 8. If each flow evenly shares a link’s capacity with other flows
traversing that link, then the 40 flows crossing the 10 Gbps A-to-B link (as well as the 10 Gbps B-to-C
link) will each only receive which is significantly less than the 1 Gbps network10 Gbps/40=250 Mbps,

Figure 6.31 Highly interconnected data network topology

standard 12-meter shipping container, a “mini data center” and ships the container to the data center
location. Each container has up to a few thousand hosts, stacked in tens of racks, which are packed
closely together. At the data center location, multiple containers are interconnected with each other and
also with the Internet. Once a prefabricated container is deployed at a data center, it is often difficult to
service. Thus, each container is designed for graceful performance degradation: as components
(servers and switches) fail over time, the container continues to operate but with degraded performance.
When many components have failed and performance has dropped below a threshold, the entire
container is removed and replaced with a fresh one.

Building a data center out of containers creates new networking challenges. With an MDC, there are two
types of networks: the container-internal networks within each of the containers and the core network

connecting each container [Guo 2009; Farrington 2010]. Within each container, at the scale of up to a
few thousand hosts, it is possible to build a fully connected network (as described above) using
inexpensive commodity Gigabit Ethernet switches. However, the design of the core network,
interconnecting hundreds to thousands of containers while providing high host-to-host bandwidth across
containers for typical workloads, remains a challenging problem. A hybrid electrical/optical switch

architecture for interconnecting the containers is proposed in [Farrington 2010].

When using highly interconnected topologies, one of the major issues is designing routing algorithms

among the switches. One possibility [Greenberg 2009b] is to use a form of random routing. Another
possibility [Guo 2009] is to deploy multiple network interface cards in each host, connect each host to
multiple low-cost commodity switches, and allow the hosts themselves to intelligently route traffic among
the switches. Variations and extensions of these approaches are currently being deployed in
contemporary data centers.

Another important trend is that large cloud providers are increasingly building or customizing just about
everything that is in their data centers, including network adapters, switches routers, TORs, software,

and networking protocols [Greenberg 2015, Singh 2015]. Another trend, pioneered by Amazon, is to
improve reliability with “availability zones,” which essentially replicate distinct data centers in different
nearby buildings. By having the buildings nearby (a few kilometers apart), transactional data can be
synchronized across the data centers in the same availability zone while providing fault tolerance

[Amazon 2014]. Many more innovations in data center design are likely to continue to come; interested
readers are encouraged to see the recent papers and videos on data center network design.

amount of time from when a node completes transmission until the subsequent node is permitted

to transmit (that is, the polling delay) is d . Suppose that within a polling round, a given node is

allowed to transmit at most Q bits. What is the maximum throughput of the broadcast channel?
P14. Consider three LANs interconnected by two routers, as shown in Figure 6.33 .

a. Assign IP addresses to all of the interfaces. For Subnet 1 use addresses of the form
192.168.1.xxx; for Subnet 2 uses addresses of the form 192.168.2.xxx; and for Subnet 3
use addresses of the form 192.168.3.xxx.

b. Assign MAC addresses to all of the adapters.
c. Consider sending an IP datagram from Host E to Host B. Suppose all of the ARP tables

are up to date. Enumerate all the steps, as done for the single-router example in Section
6.4.1 .

d. Repeat (c), now assuming that the ARP table in the sending host is empty (and the other
tables are up to date).

P15. Consider Figure 6.33 . Now we replace the router between subnets 1 and 2 with a switch
S1, and label the router between subnets 2 and 3 as R1.

Figure 6.33 Three subnets, interconnected by routers

a. Consider sending an IP datagram from Host E to Host F. Will Host E ask router R1 to
help forward the datagram? Why? In the Ethernet frame containing the IP datagram,
what are the source and destination IP and MAC addresses?

b. Suppose E would like to send an IP datagram to B, and assume that E’s ARP cache
does not contain B’s MAC address. Will E perform an ARP query to find B’s MAC

poll

P26. Let’s consider the operation of a learning switch in the context of a network in which 6
nodes labeled A through F are star connected into an Ethernet switch. Suppose that (i) B sends
a frame to E, (ii) E replies with a frame to B, (iii) A sends a frame to B, (iv) B replies with a frame
to A. The switch table is initially empty. Show the state of the switch table before and after each
of these events. For each of these events, identify the link(s) on which the transmitted frame will
be forwarded, and briefly justify your answers.

P27. In this problem, we explore the use of small packets for Voice-over-IP applications. One of
the drawbacks of a small packet size is that a large fraction of link bandwidth is consumed by

overhead bytes. To this end, suppose that the packet consists of P bytes and 5 bytes of header.
a. Consider sending a digitally encoded voice source directly. Suppose the source is

encoded at a constant rate of 128 kbps. Assume each packet is entirely filled before the
source sends the packet into the network. The time required to fill a packet is the
packetization delay. In terms of L, determine the packetization delay in milliseconds.

b. Packetization delays greater than 20 msec can cause a noticeable and unpleasant echo.
Determine the packetization delay for bytes (roughly corresponding to a
maximum-sized Ethernet packet) and for (corresponding to an ATM packet).

c. Calculate the store-and-forward delay at a single switch for a link rate of Mbps for
 bytes, and for bytes.

d. Comment on the advantages of using a small packet size.

P28. Consider the single switch VLAN in Figure 6.25 , and assume an external router is
connected to switch port 1. Assign IP addresses to the EE and CS hosts and router interface.
Trace the steps taken at both the network layer and the link layer to transfer an IP datagram

from an EE host to a CS host (Hint: Reread the discussion of Figure 6.19 in the text).
P29. Consider the MPLS network shown in Figure 6.29 , and suppose that routers R5 and R6
are now MPLS enabled. Suppose that we want to perform traffic engineering so that packets
from R6 destined for A are switched to A via R6-R4-R3-R1, and packets from R5 destined for A
are switched via R5-R4-R2-R1. Show the MPLS tables in R5 and R6, as well as the modified
table in R4, that would make this possible.

P30. Consider again the same scenario as in the previous problem, but suppose that packets
from R6 destined for D are switched via R6-R4-R3, while packets from R5 destined to D are
switched via R4-R2-R1-R3. Show the MPLS tables in all routers that would make this possible.

P31. In this problem, you will put together much of what you have learned about Internet
protocols. Suppose you walk into a room, connect to Ethernet, and want to download a Web
page. What are all the protocol steps that take place, starting from powering on your PC to
getting the Web page? Assume there is nothing in our DNS or browser caches when you power

on your PC. (Hint: The steps include the use of Ethernet, DHCP, ARP, DNS, TCP, and HTTP
protocols.) Explicitly indicate in your steps how you obtain the IP and MAC addresses of a
gateway router.

P32. Consider the data center network with hierarchical topology in Figure 6.30 . Suppose now

L=1,500
L=50

R=622
L=1,500 L=50

Wireshark Labs

At the Companion website for this textbook, http://www.pearsonhighered.com/cs-resources/, you’ll
find a Wireshark lab that examines the operation of the IEEE 802.3 protocol and the Wireshark frame
format. A second Wireshark lab examines packet traces taken in a home network scenario.

AN INTERVIEW WITH…
Simon S. Lam
Simon S. Lam is Professor and Regents Chair in Computer Sciences at the University of Texas
at Austin. From 1971 to 1974, he was with the ARPA Network Measurement Center at UCLA,
where he worked on satellite and radio packet switching. He led a research group that invented
secure sockets and prototyped, in 1993, the first secure sockets layer named Secure Network
Programming, which won the 2004 ACM Software System Award. His research interests are in
design and analysis of network protocols and security services. He received his BSEE from

there are 80 pairs of flows, with ten flows between the first and ninth rack, ten flows between the
second and tenth rack, and so on. Further suppose that all links in the network are 10 Gbps,
except for the links between hosts and TOR switches, which are 1 Gbps.

a. Each flow has the same data rate; determine the maximum rate of a flow.
b. For the same traffic pattern, determine the maximum rate of a flow for the highly

interconnected topology in Figure 6.31 .
c. Now suppose there is a similar traffic pattern, but involving 20 hosts on each rack and

160 pairs of flows. Determine the maximum flow rates for the two topologies.

P33. Consider the hierarchical network in Figure 6.30 and suppose that the data center needs to
support e-mail and video distribution among other applications. Suppose four racks of servers
are reserved for e-mail and four racks are reserved for video. For each of the applications, all
four racks must lie below a single tier-2 switch since the tier-2 to tier-1 links do not have
sufficient bandwidth to support the intra-application traffic. For the e-mail application, suppose
that for 99.9 percent of the time only three racks are used, and that the video application has
identical usage patterns.

a. For what fraction of time does the e-mail application need to use a fourth rack? How
about for the video application?

b. Assuming e-mail usage and video usage are independent, for what fraction of time do
(equivalently, what is the probability that) both applications need their fourth rack?

c. Suppose that it is acceptable for an application to have a shortage of servers for 0.001
percent of time or less (causing rare periods of performance degradation for users).

Discuss how the topology in Figure 6.31 can be used so that only seven racks are
collectively assigned to the two applications (assuming that the topology can support all
the traffic).

Washington State University and his MS and PhD from UCLA. He was elected to the National
Academy of Engineering in 2007.

Why did you decide to specialize in networking?

When I arrived at UCLA as a new graduate student in Fall 1969, my intention was to study
control theory. Then I took the queuing theory classes of Leonard Kleinrock and was very
impressed by him. For a while, I was working on adaptive control of queuing systems as a
possible thesis topic. In early 1972, Larry Roberts initiated the ARPAnet Satellite System project
(later called Packet Satellite). Professor Kleinrock asked me to join the project. The first thing we
did was to introduce a simple, yet realistic, backoff algorithm to the slotted ALOHA protocol.
Shortly thereafter, I found many interesting research problems, such as ALOHA’s instability
problem and need for adaptive backoff, which would form the core of my thesis.

You were active in the early days of the Internet in the 1970s, beginning with your student days

at UCLA. What was it like then? Did people have any inkling of what the Internet would become?

The atmosphere was really no different from other system-building projects I have seen in
industry and academia. The initially stated goal of the ARPAnet was fairly modest, that is, to
provide access to expensive computers from remote locations so that many more scientists
could use them. However, with the startup of the Packet Satellite project in 1972 and the Packet
Radio project in 1973, ARPA’s goal had expanded substantially. By 1973, ARPA was building
three different packet networks at the same time, and it became necessary for Vint Cerf and Bob
Kahn to develop an interconnection strategy.

Back then, all of these progressive developments in networking were viewed (I believe) as
logical rather than magical. No one could have envisioned the scale of the Internet and power of
personal computers today. It was a decade before appearance of the first PCs. To put things in
perspective, most students submitted their computer programs as decks of punched cards for
batch processing. Only some students had direct access to computers, which were typically
housed in a restricted area. Modems were slow and still a rarity. As a graduate student, I had
only a phone on my desk, and I used pencil and paper to do most of my work.

Where do you see the field of networking and the Internet heading in the future?

In the past, the simplicity of the Internet’s IP protocol was its greatest strength in vanquishing

competition and becoming the de facto standard for internetworking. Unlike competitors, such as
X.25 in the 1980s and ATM in the 1990s, IP can run on top of any link-layer networking
technology, because it offers only a best-effort datagram service. Thus, any packet network can
connect to the Internet.

Today, IP’s greatest strength is actually a shortcoming. IP is like a straitjacket that confines the
Internet’s development to specific directions. In recent years, many researchers have redirected
their efforts to the application layer only. There is also a great deal of research on wireless ad
hoc networks, sensor networks, and satellite networks. These networks can be viewed either as
stand-alone systems or link-layer systems, which can flourish because they are outside of the IP
straitjacket.

Many people are excited about the possibility of P2P systems as a platform for novel Internet
applications. However, P2P systems are highly inefficient in their use of Internet resources. A
concern of mine is whether the transmission and switching capacity of the Internet core will
continue to increase faster than the traffic demand on the Internet as it grows to interconnect all
kinds of devices and support future P2P-enabled applications. Without substantial
overprovisioning of capacity, ensuring network stability in the presence of malicious attacks and
congestion will continue to be a significant challenge.

The Internet’s phenomenal growth also requires the allocation of new IP addresses at a rapid
rate to network operators and enterprises worldwide. At the current rate, the pool of unallocated
IPv4 addresses would be depleted in a few years. When that happens, large contiguous blocks
of address space can only be allocated from the IPv6 address space. Since adoption of IPv6 is
off to a slow start, due to lack of incentives for early adopters, IPv4 and IPv6 will most likely co-
exist on the Internet for many years to come. Successful migration from an IPv4-dominant
Internet to an IPv6-dominant Internet will require a substantial global effort.

What is the most challenging part of your job?

The most challenging part of my job as a professor is teaching and motivating every student in
my class, and every doctoral student under my supervision, rather than just the high achievers.
The very bright and motivated may require a little guidance but not much else. I often learn more
from these students than they learn from me. Educating and motivating the underachievers
present a major challenge.

What impacts do you foresee technology having on learning in the future?

Eventually, almost all human knowledge will be accessible through the Internet, which will be the
most powerful tool for learning. This vast knowledge base will have the potential of leveling the

playing field for students all over the world. For example, motivated students in any country will
be able to access the best-class Web sites, multimedia lectures, and teaching materials.
Already, it was said that the IEEE and ACM digital libraries have accelerated the development of
computer science researchers in China. In time, the Internet will transcend all geographic
barriers to learning.

an intruder cannot forge the contents of another message, y, that has the same hash value as the
original message.

Let’s convince ourselves that a simple checksum, such as the Internet checksum, would make a poor
cryptographic hash function. Rather than performing 1s complement arithmetic (as in the Internet
checksum), let us compute a checksum by treating each character as a byte and adding the bytes
together using 4-byte chunks at a time. Suppose Bob owes Alice $100.99 and sends an IOU to Alice

consisting of the text string “ IOU100.99BOB. ” The ASCII representation (in hexadecimal notation) for

these letters is 49 , 4F , 55 , 31 , 30 , 30 , 2E , 39 , 39 , 42 , 4F , 42 .

Figure 8.8 (top) shows that the 4-byte checksum for this message is B2 C1 D2 AC. A slightly different
message (and a much more costly one for Bob) is shown in the bottom half of Figure 8.8. The
messages “ IOU100.99BOB ” and “ IOU900.19BOB ” have the same checksum. Thus, this simple
checksum algorithm violates the requirement above. Given the original data, it is simple to find another
set of data with the same checksum. Clearly, for security purposes, we are going to need a more
powerful hash function than a checksum.

The MD5 hash algorithm of Ron Rivest [RFC 1321] is in wide use today. It computes a 128-bit hash in a
four-step process consisting of a padding step (adding a one followed by enough zeros so that the
length of the message satisfies certain conditions), an append step (appending a 64-bit representation
of the message length before padding), an initialization of an accumulator, and a final looping step in
which the message’s 16-word blocks are processed (mangled) in four rounds. For a description of MD5

(including a C source code implementation) see [RFC 1321].

The second major hash algorithm in use today is the Secure Hash Algorithm (SHA-1) [FIPS 1995]. This
algorithm is based on principles similar to those used in the design of MD4 [RFC 1320], the predecessor
to MD5. SHA-1, a US federal standard, is required for use whenever a cryptographic hash algorithm is
needed for federal applications. It produces a 160-bit message digest. The longer output length makes
SHA-1 more secure.

8.3.2 Message Authentication Code

Let’s now return to the problem of message integrity. Now that we understand hash functions, let’s take
a first stab at how we might perform message integrity:

1. Alice creates message m and calculates the hash H(m) (for example with SHA-1).
2. Alice then appends H(m) to the message m, creating an extended message (m, H(m)), and

sends the extended message to Bob.

the messages they send to each other without having to integrate complex encryption algorithms into
the integrity process.

As you might expect, a number of different standards for MACs have been proposed over the years.
The most popular standard today is HMAC, which can be used either with MD5 or SHA-1. HMAC

actually runs data and the authentication key through the hash function twice [Kaufman 1995; RFC
2104].

There still remains an important issue. How do we distribute the shared authentication key to the
communicating entities? For example, in the link-state routing algorithm, we would somehow need to
distribute the secret authentication key to each of the routers in the autonomous system. (Note that the
routers can all use the same authentication key.) A network administrator could actually accomplish this
by physically visiting each of the routers. Or, if the network administrator is a lazy guy, and if each router
has its own public key, the network administrator could distribute the authentication key to any one of
the routers by encrypting it with the router’s public key and then sending the encrypted key over the
network to the router.

8.3.3 Digital Signatures

Think of the number of the times you’ve signed your name to a piece of paper during the last week. You
sign checks, credit card receipts, legal documents, and letters. Your signature attests to the fact that you
(as opposed to someone else) have acknowledged and/or agreed with the document’s contents. In a
digital world, one often wants to indicate the owner or creator of a document, or to signify one’s
agreement with a document’s content. A digital signature is a cryptographic technique for achieving
these goals in a digital world.

Just as with handwritten signatures, digital signing should be done in a way that is verifiable and
nonforgeable. That is, it must be possible to prove that a document signed by an individual was indeed

signed by that individual (the signature must be verifiable) and that only that individual could have
signed the document (the signature cannot be forged).

Let’s now consider how we might design a digital signature scheme. Observe that when Bob signs a
message, Bob must put something on the message that is unique to him. Bob could consider attaching
a MAC for the signature, where the MAC is created by appending his key (unique to him) to the
message, and then taking the hash. But for Alice to verify the signature, she must also have a copy of
the key, in which case the key would not be unique to Bob. Thus, MACs are not going to get the job
done here.

Figure 8.11 Sending a digitally signed message

MACs start with a message (or a document). To create a MAC out of the message, we append an
authentication key to the message, and then take the hash of the result. Note that neither public key nor
symmetric key encryption is involved in creating the MAC. To create a digital signature, we first take the
hash of the message and then encrypt the message with our private key (using public key
cryptography). Thus, a digital signature is a “heavier” technique, since it requires an underlying Public

Key Infrastructure (PKI) with certification authorities as described below. We’ll see in Section 8.4 that
PGP—a popular secure e-mail system—uses digital signatures for message integrity. We’ve seen

already that OSPF uses MACs for message integrity. We’ll see in Sections 8.5 and 8.6 that MACs are
also used for popular transport-layer and network-layer security protocols.

Public Key Certification

An important application of digital signatures is public key certification, that is, certifying that a public
key belongs to a specific entity. Public key certification is used in many popular secure networking
protocols, including IPsec and SSL.

To gain insight into this problem, let’s consider an Internet-commerce version of the classic “pizza
prank.” Alice is in the pizza delivery business and accepts orders

Figure 8.12 Verifying a signed message

over the Internet. Bob, a pizza lover, sends Alice a plaintext message that includes his home address
and the type of pizza he wants. In this message, Bob also includes a digital signature (that is, a signed
hash of the original plaintext message) to prove to Alice that he is the true source of the message. To
verify the signature, Alice obtains Bob’s public key (perhaps from a public key server or from the e-mail
message) and checks the digital signature. In this manner she makes sure that Bob, rather than some
adolescent prankster, placed the order.

This all sounds fine until clever Trudy comes along. As shown in Figure 8.13, Trudy is indulging in a
prank. She sends a message to Alice in which she says she is Bob, gives Bob’s home address, and
orders a pizza. In this message she also includes her (Trudy’s) public key, although Alice naturally
assumes it is Bob’s public key. Trudy also attaches a digital signature, which was created with her own
(Trudy’s) private key. After receiving the message, Alice applies Trudy’s public key (thinking that it is
Bob’s) to the digital signature and concludes that the plaintext message was

Figure 8.13 Trudy masquerades as Bob using public key cryptography

indeed created by Bob. Bob will be very surprised when the delivery person brings a pizza with
pepperoni and anchovies to his home!

We see from this example that for public key cryptography to be useful, you need to be able to verify
that you have the actual public key of the entity (person, router, browser, and so on) with whom you
want to communicate. For example, when Alice wants to communicate with Bob using public key
cryptography, she needs to verify that the public key that is supposed to be Bob’s is indeed Bob’s.

Binding a public key to a particular entity is typically done by a Certification Authority (CA), whose job
is to validate identities and issue certificates. A CA has the following roles:

1. A CA verifies that an entity (a person, a router, and so on) is who it says it is. There are no
mandated procedures for how certification is done. When dealing with a CA, one must trust the
CA to have performed a suitably rigorous identity verification. For example, if Trudy were able to
walk into the Fly-by-Night

Figure 8.14 Bob has his public key certified by the CA

CA and simply announce “I am Alice” and receive certificates associated with the identity of
Alice, then one shouldn’t put much faith in public keys certified by the Fly-by-Night CA. On the
other hand, one might (or might not!) be more willing to trust a CA that is part of a federal or
state program. You can trust the identity associated with a public key only to the extent to which
you can trust a CA and its identity verification techniques. What a tangled web of trust we spin!

2. Once the CA verifies the identity of the entity, the CA creates a certificate that binds the public
key of the entity to the identity. The certificate contains the public key and globally unique
identifying information about the owner of the public key (for example, a human name or an IP

address). The certificate is digitally signed by the CA. These steps are shown in Figure 8.14.

Let us now see how certificates can be used to combat pizza-ordering pranksters, like Trudy, and other
undesirables. When Bob places his order he also sends his CA-signed certificate. Alice uses the CA’s
public key to check the validity of Bob’s certificate and extract Bob’s public key.

Both the International Telecommunication Union (ITU) and the IETF have developed standards for CAs.

ITU X.509 [ITU 2005a] specifies an authentication service as well as a specific syntax for certificates.
[RFC 1422] describes CA-based key management for use with secure Internet e-mail. It is compatible
with X.509 but goes beyond X.509 by establishing procedures and conventions for a key management

architecture. Table 8.4 describes some of the important fields in a certificate.

Table 8.4 Selected fields in an X.509 and RFC 1422 public key

Field Name Description

Version Version number of X.509 specification

Serial
number

CA-issued unique identifier for a certificate

Signature Specifies the algorithm used by CA to sign this certificate

Issuer
name

Identity of CA issuing this certificate, in distinguished name (DN) [RFC 4514] format

Validity
period

Start and end of period of validity for certificate

Subject
name

Identity of entity whose public key is associated with this certificate, in DN format

Subject
public key

The subject’s public key as well indication of the public key algorithm (and algorithm
parameters) to be used with this key

9.1 Multimedia Networking Applications

We define a multimedia network application as any network application that employs audio or video. In
this section, we provide a taxonomy of multimedia applications. We’ll see that each class of applications
in the taxonomy has its own unique set of service requirements and design issues. But before diving into
an in-depth discussion of Internet multimedia applications, it is useful to consider the intrinsic
characteristics of the audio and video media themselves.

9.1.1 Properties of Video

Perhaps the most salient characteristic of video is its high bit rate. Video distributed over the Internet
typically ranges from 100 kbps for low-quality video conferencing to over 3 Mbps for streaming high-
definition movies. To get a sense of how video bandwidth demands compare with those of other Internet
applications, let’s briefly consider three different users, each using a different Internet application. Our
first user, Frank, is going quickly through photos posted on his friends’ Facebook pages. Let’s assume
that Frank is looking at a new photo every 10 seconds, and that photos are on average 200 Kbytes in
size. (As usual, throughout this discussion we make the simplifying assumption that)
Our second user, Martha, is streaming music from the Internet (“the cloud”) to her smartphone. Let’s
assume Martha is using a service such as Spotify to listen to many MP3 songs, one after the other,
each encoded at a rate of 128 kbps. Our third user, Victor, is watching a video that has been encoded at
2 Mbps. Finally, let’s suppose that the session length for all three users is 4,000 seconds (approximately

67 minutes). Table 9.1 compares the bit rates and the total bytes transferred for these three users. We
see that video streaming consumes by far the most bandwidth, having a bit rate of more than ten times
greater than that of the Facebook and music-streaming applications. Therefore, when design

Table 9.1 Comparison of bit-rate requirements of three Internet applications

Bit rate Bytes transferred in 67 min

Facebook Frank 160 kbps 80 Mbytes

Martha Music 128 kbps 64 Mbytes

Victor Video 2 Mbps 1 Gbyte

1 Kbyte=8,000 bits.

ing networked video applications, the first thing we must keep in mind is the high bit-rate requirements of
video. Given the popularity of video and its high bit rate, it is perhaps not surprising that Cisco predicts

[Cisco 2015] that streaming and stored video will be approximately 80 percent of global consumer
Internet traffic by 2019.

Another important characteristic of video is that it can be compressed, thereby trading off video quality
with bit rate. A video is a sequence of images, typically being displayed at a constant rate, for example,
at 24 or 30 images per second. An uncompressed, digitally encoded image consists of an array of
pixels, with each pixel encoded into a number of bits to represent luminance and color. There are two

types of redundancy in video, both of which can be exploited by video compression. Spatial
redundancy is the redundancy within a given image. Intuitively, an image that consists of mostly white
space has a high degree of redundancy and can be efficiently compressed without significantly

sacrificing image quality. Temporal redundancy reflects repetition from image to subsequent image. If,
for example, an image and the subsequent image are exactly the same, there is no reason to re-encode
the subsequent image; it is instead more efficient simply to indicate during encoding that the subsequent
image is exactly the same. Today’s off-the-shelf compression algorithms can compress a video to
essentially any bit rate desired. Of course, the higher the bit rate, the better the image quality and the
better the overall user viewing experience.

We can also use compression to create multiple versions of the same video, each at a different quality
level. For example, we can use compression to create, say, three versions of the same video, at rates of
300 kbps, 1 Mbps, and 3 Mbps. Users can then decide which version they want to watch as a function of
their current available bandwidth. Users with high-speed Internet connections might choose the 3 Mbps
version; users watching the video over 3G with a smartphone might choose the 300 kbps version.
Similarly, the video in a video conference application can be compressed “on-the-fly” to provide the best
video quality given the available end-to-end bandwidth between conversing users.

9.1.2 Properties of Audio

Digital audio (including digitized speech and music) has significantly lower bandwidth requirements than
video. Digital audio, however, has its own unique properties that must be considered when designing
multimedia network applications. To understand these properties, let’s first consider how analog audio
(which humans and musical instruments generate) is converted to a digital signal:

The analog audio signal is sampled at some fixed rate, for example, at 8,000 samples per second.
The value of each sample will be some real number.

Each of the samples is then rounded to one of a finite number of values. This operation is referred to
as quantization. The number of such finite values—called quantization values—is typically a power

of two, for example, 256 quantization values.

Each of the quantization values is represented by a fixed number of bits. For example, if there are
256 quantization values, then each value—and hence each audio sample—is represented by one
byte. The bit representations of all the samples are then concatenated together to form the digital
representation of the signal. As an example, if an analog audio signal is sampled at 8,000 samples
per second and each sample is quantized and represented by 8 bits, then the resulting digital signal
will have a rate of 64,000 bits per second. For playback through audio speakers, the digital signal
can then be converted back—that is, decoded—to an analog signal. However, the decoded analog
signal is only an approximation of the original signal, and the sound quality may be noticeably
degraded (for example, high-frequency sounds may be missing in the decoded signal). By
increasing the sampling rate and the number of quantization values, the decoded signal can better
approximate the original analog signal. Thus (as with video), there is a trade-off between the quality
of the decoded signal and the bit-rate and storage requirements of the digital signal.

The basic encoding technique that we just described is called pulse code modulation (PCM). Speech
encoding often uses PCM, with a sampling rate of 8,000 samples per second and 8 bits per sample,
resulting in a rate of 64 kbps. The audio compact disk (CD) also uses PCM, with a sampling rate of
44,100 samples per second with 16 bits per sample; this gives a rate of 705.6 kbps for mono and 1.411
Mbps for stereo.

PCM-encoded speech and music, however, are rarely used in the Internet. Instead, as with video,
compression techniques are used to reduce the bit rates of the stream. Human speech can be
compressed to less than 10 kbps and still be intelligible. A popular compression technique for near CD-
quality stereo music is MPEG 1 layer 3, more commonly known as MP3. MP3 encoders can compress
to many different rates; 128 kbps is the most common encoding rate and produces very little sound
degradation. A related standard is Advanced Audio Coding (AAC), which has been popularized by
Apple. As with video, multiple versions of a prerecorded audio stream can be created, each at a different
bit rate.

Although audio bit rates are generally much less than those of video, users are generally much more
sensitive to audio glitches than video glitches. Consider, for example, a video conference taking place
over the Internet. If, from time to time, the video signal is lost for a few seconds, the video conference
can likely proceed without too much user frustration. If, however, the audio signal is frequently lost, the
users may have to terminate the session.

9.1.3 Types of Multimedia Network Applications

The Internet supports a large variety of useful and entertaining multimedia applications. In this

subsection, we classify multimedia applications into three broad categories: (i) streaming stored

audio/video, (ii) conversational voice/video-over-IP, and (iii) streaming live audio/video. As we will soon
see, each of these application categories has its own set of service requirements and design issues.

Streaming Stored Audio and Video

To keep the discussion concrete, we focus here on streaming stored video, which typically combines
video and audio components. Streaming stored audio (such as Spotify’s streaming music service) is
very similar to streaming stored video, although the bit rates are typically much lower.

In this class of applications, the underlying medium is prerecorded video, such as a movie, a television
show, a prerecorded sporting event, or a prerecorded user-generated video (such as those commonly
seen on YouTube). These prerecorded videos are placed on servers, and users send requests to the

servers to view the videos on demand. Many Internet companies today provide streaming video,
including YouTube (Google), Netflix, Amazon, and Hulu. Streaming stored video has three key
distinguishing features.

Streaming. In a streaming stored video application, the client typically begins video playout within a
few seconds after it begins receiving the video from the server. This means that the client will be
playing out from one location in the video while at the same time receiving later parts of the video
from the server. This technique, known as streaming, avoids having to download the entire video
file (and incurring a potentially long delay) before playout begins.

Interactivity. Because the media is prerecorded, the user may pause, reposition forward, reposition
backward, fast-forward, and so on through the video content. The time from when the user makes
such a request until the action manifests itself at the client should be less than a few seconds for
acceptable responsiveness.

Continuous playout. Once playout of the video begins, it should proceed according to the original
timing of the recording. Therefore, data must be received from the server in time for its playout at the
client; otherwise, users experience video frame freezing (when the client waits for the delayed
frames) or frame skipping (when the client skips over delayed frames).

By far, the most important performance measure for streaming video is average throughput. In order to
provide continuous playout, the network must provide an average throughput to the streaming

application that is at least as large the bit rate of the video itself. As we will see in Section 9.2, by using
buffering and prefetching, it is possible to provide continuous playout even when the throughput
fluctuates, as long as the average throughput (averaged over 5–10 seconds) remains above the video

rate [Wang 2008].

For many streaming video applications, prerecorded video is stored on, and streamed from, a CDN
rather than from a single data center. There are also many P2P video streaming applications for which
the video is stored on users’ hosts (peers), with different chunks of video arriving from different peers

that may spread around the globe. Given the prominence of Internet video streaming, we will explore

video streaming in some depth in Section 9.2, paying particular attention to client buffering, prefetching,
adapting quality to bandwidth availability, and CDN distribution.

Conversational Voice- and Video-over-IP

Real-time conversational voice over the Internet is often referred to as Internet telephony, since, from
the user’s perspective, it is similar to the traditional circuit-switched telephone service. It is also
commonly called Voice-over-IP (VoIP). Conversational video is similar, except that it includes the video
of the participants as well as their voices. Most of today’s voice and video conversational systems allow
users to create conferences with three or more participants. Conversational voice and video are widely
used in the Internet today, with the Internet companies Skype, QQ, and Google Talk boasting hundreds
of millions of daily users.

In our discussion of application service requirements in Chapter 2 (Figure 2.4), we identified a number
of axes along which application requirements can be classified. Two of these axes—timing
considerations and tolerance of data loss—are particularly important for conversational voice and video
applications. Timing considerations are important because audio and video conversational applications
are highly delay-sensitive. For a conversation with two or more interacting speakers, the delay from
when a user speaks or moves until the action is manifested at the other end should be less than a few
hundred milliseconds. For voice, delays smaller than 150 milliseconds are not perceived by a human
listener, delays between 150 and 400 milliseconds can be acceptable, and delays exceeding 400
milliseconds can result in frustrating, if not completely unintelligible, voice conversations.

On the other hand, conversational multimedia applications are loss-tolerant—occasional loss only
causes occasional glitches in audio/video playback, and these losses can often be partially or fully
concealed. These delay-sensitive but loss-tolerant characteristics are clearly different from those of
elastic data applications such as Web browsing, e-mail, social networks, and remote login. For elastic
applications, long delays are annoying but not particularly harmful; the completeness and integrity of the
transferred data, however, are of paramount importance. We will explore conversational voice and video

in more depth in Section 9.3, paying particular attention to how adaptive playout, forward error
correction, and error concealment can mitigate against network-induced packet loss and delay.

Streaming Live Audio and Video

This third class of applications is similar to traditional broadcast radio and television, except that

transmission takes place over the Internet. These applications allow a user to receive a live radio or
television transmission—such as a live sporting event or an ongoing news event—transmitted from any
corner of the world. Today, thousands of radio and television stations around the world are broadcasting
content over the Internet.

Live, broadcast-like applications often have many users who receive the same audio/video program at

the same time. In the Internet today, this is typically done with CDNs (Section 2.6). As with streaming
stored multimedia, the network must provide each live multimedia flow with an average throughput that
is larger than the video consumption rate. Because the event is live, delay can also be an issue,
although the timing constraints are much less stringent than those for conversational voice. Delays of up
to ten seconds or so from when the user chooses to view a live transmission to when playout begins can
be tolerated. We will not cover streaming live media in this book because many of the techniques used
for streaming live media—initial buffering delay, adaptive bandwidth use, and CDN distribution—are
similar to those for streaming stored media.

References

A note on URLs. In the references below, we have provided URLs for Web pages, Web-only documents, and other material that has not been published in a conference or
journal (when we have been able to locate a URL for such material). We have not provided URLs for conference and journal publications, as these documents can usually be

located via a search engine, from the conference Web site (e.g., papers in all ACM SIGCOMM conferences and workshops can be located via http://www.acm.org/
sigcomm), or via a digital library subscription. While all URLs provided below were valid (and tested) in Jan. 2016, URLs can become out of date. Please consult the online
version of this book (www.pearsonhighered .com/cs-resources) for an up-to-date bibliography.

A note on Internet Request for Comments (RFCs): Copies of Internet RFCs are available at many sites. The RFC Editor of the Internet Society (the body that oversees
the RFCs) maintains the site, http://www.rfc-editor.org. This site allows you to search for a specific RFC by title, number, or authors, and will show updates to any RFCs
listed. Internet RFCs can be updated or obsoleted by later RFCs. Our favorite site for getting RFCs is the original source—http://www.rfc-editor.org.

[3GPP 2016] Third Generation Partnership Project homepage, http://www.3gpp.org/

[Abramson 1970] N. Abramson, “The Aloha System—Another Alternative for Computer Communications,” Proc. 1970 Fall Joint Computer Conference, AFIPS Conference,
p. 37, 1970.

[Abramson 1985] N. Abramson, “Development of the Alohanet,” IEEE Transactions on Information Theory, Vol. IT-31, No. 3 (Mar. 1985), pp. 119–123.

[Abramson 2009] N. Abramson, “The Alohanet—Surfing for Wireless Data,” IEEE Communications Magazine, Vol. 47, No. 12, pp. 21–25.

[Adhikari 2011a] V. K. Adhikari, S. Jain, Y. Chen, Z. L. Zhang, “Vivisecting YouTube: An Active Measurement Study,” Technical Report, University of Minnesota, 2011.

[Adhikari 2012] V. K. Adhikari, Y. Gao, F. Hao, M. Varvello, V. Hilt, M. Steiner, Z. L. Zhang, “Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery,”
Technical Report, University of Minnesota, 2012.

[Afanasyev 2010] A. Afanasyev, N. Tilley, P. Reiher, L. Kleinrock, “Host-to-Host Congestion Control for TCP,” IEEE Communications Surveys & Tutorials, Vol. 12, No. 3, pp.
304–342.

[Agarwal 2009] S. Agarwal, J. Lorch, “Matchmaking for Online Games and Other Latency-sensitive P2P Systems,” Proc. 2009 ACM SIGCOMM.

[Ager 2012] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, W. Willinger, “Anatomy of a Large European ISP,” Sigcomm, 2012.

Index

	Computer Networking: A Top-Down Approach, 7th Edition
	Content
	Chapter 1 Computer Networks and the Internet
	1.1 What Is the Internet?

